Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zi-Liang Wang, ${ }^{\text {a }}$ * Lin-Heng Wei ${ }^{\text {b }}$ and Ming-Xue Lia

${ }^{\mathrm{a}}$ Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, and ${ }^{\text {b }}$ College of Environment and Planning, Henan University, Kaifeng 475001, People's Republic of China

Correspondence e-mail: zlwang@henu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.056$
$w R$ factor $=0.155$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4,4'-Bipyridine-2,4-dihydroxybenzoic acid (1/1)

The title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4}$, consists of $4,4^{\prime}$ bipyridine and 2,4-dihydroxybenzoic acid molecules, which are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming infinite onedimensional chains. Adjacent chains are further linked into a two-dimensional structure by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

The reliability of hydrogen bonds has been widely applied to organize one-, two- and three-dimensional networks. Moreover, hydrogen-bonded networks are organized according to their dimensionality and shape (Beatty, 2003). We report here the structure of the title compound, (I).

(I)

Compound (I) consists of 4,4'-bipyridine and 2,4dihydroxybenzoic acid molecules (Fig. 1). Atoms O2 and O4 of 2,4-dihydroxybenzoic acid acts as hydrogen-bond donors to atoms N 1 and N 2 of 4,4'-bipyridine (Table 1), generating an infinite one-dimensional chain along the [401] direction (Fig. 2). There is also an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond in 2,4-dihydroxybenzoic acid, leading to an $S(6)$ ring. In addition, adjacent chains are linked into a two-dimensional framework by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions with an $\mathrm{H} 15 \cdots \operatorname{Cg} 1(x$, $\frac{3}{2}-y, z+\frac{1}{2}$) distance of $2.73 \AA$ (Fig. 3;Cg1 is the centroid of the C1-C6 ring).

Figure 1
The asymmetric unit of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Experimental

All reagents were commercially available and of analytical grade. An ethanol solution (3 ml) of 4, 4^{\prime}-bipyridine $(0.156 \mathrm{~g}, 1 \mathrm{mmol})$ was added dropwise to a vigorously stirred solution of 2,4-dihydroxybenzoic acid $(0.31 \mathrm{~g}, 2.0 \mathrm{mmol})$ in 10 ml distilled water. The solution was then stirred for 15 min at 343 K and filtered. On slow evaporation of the filtrate for 3 d , crystals of (I) appeared and were selected. The crystal shape and IR spectrum confirmed that they were not the starting materials. We expected to prepare a bipyridinium dihydroxybenzoate salt. However, the obtained compound was, in fact, a co-crystal of the neutral molecules.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4}$
$M_{r}=310.30$
Monoclinic, $P 2_{b} / c$
$a=6.6085$ (8) А
$b=10.7724$ (12) A
$c=20.809$ (2) A
$\beta=95.942$ (2) ${ }^{\circ}$
$V=1473.4(3) \AA^{3}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: none
12686 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.155$
$S=1.00$
3528 reflections
211 parameters

$Z=4$

$D_{x}=1.399 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Plate, colorless $0.32 \times 0.20 \times 0.08 \mathrm{~mm}$

3528 independent reflections
2537 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.109$
$\theta_{\text {max }}=28.3^{\circ}$

H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0824 P)^{2}\right]$

$$
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.82	1.82	$2.6298(15)$	172
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1$	0.82	1.88	$2.6003(16)$	146
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.82	1.98	$2.7622(19)$	160
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	0.93	2.73	$3.3328(19)$	124
Symmetry codes. (i) $x-1, y, z \cdot($ ii $) x+1,-y+\frac{3}{2} z-\frac{1}{2} .\left(\right.$ (iii) $x-y+{ }^{3} z+\frac{1}{2}$				

Symmetry codes: (i) $x-1, y, z$; (ii) $x+1,-y+\frac{3}{2}, z-\frac{1}{2}$; (iii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$.
All H atoms were placed in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and $U_{\mathrm{iso}}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 2
Part of the crystal structure of (I), showing the formation of a chain along the $[40 \overline{1}]$ direction. H atoms have been omitted unless involved in hydrogen bonds (dashed lines). [Symmetry codes: (a) $x-1, y, z ;(b) 1+x$, $\frac{3}{2}-y, z-\frac{1}{2}$.]

Figure 3
A part of the crystal structure of (I), showing the formation of a sheet by the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between adjacent chains. H atoms have been omitted unless involved in hydrogen bonds (dashed lines). [Symmetry code: (\#) $x, \frac{3}{2}-y, \frac{1}{2}+z$.]

PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported by the Basic Research Foundation for Natural Science of Henan University (No. 04YBRW053).

References

Beatty, A. M. (2003). Coord. Chem. Rev. 246, 131-143.
Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

